Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Xiao-Fang Li, Ya-Qing Feng,* Xiao-Fen Hu and Mian Xu

School of Chemical Engineering and Technology, State Key Laboratory of C1 Chemical Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: Ixf7213@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in solvent or counterion
R factor $=0.064$
$w R$ factor $=0.196$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

13-Benzyl-3,10-bis(2,6-dichlorophenyl)-4,11-diphenyl-1,8-dioxa-2,9,13-triaza-dispiro[4.1.4.3]tetradeca-2,9-dien-6-one chloroform solvate

The title compound, $\mathrm{C}_{40} \mathrm{H}_{29} \mathrm{C}_{14} \mathrm{~N}_{3} \mathrm{O}_{3} . \mathrm{CHCl}_{3}$, was synthesized by the intermolecular [3+2]-cycloaddition of 2,6-dichlorobenzonitrile oxide and 1-benzyl-3,5-dibenzylidenepiperidin-4one. There are three rings linked by two spiro-C atoms. The piperidin-4-one ring adopts a chair conformation and the two five-membered isoxazoline rings are envelopes.

Comment

Spiro-compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are important processes for the construction of spiro-compounds (Caramella \& Grunanger, 1984). The structure of the title compound, (I), is reported here.

(I)

The molecular structure of (I) is illustrated in Fig. 1. (I) contains three spiro-linked rings, viz. a piperidin-4-one ring and two isoxazoline rings. The six-membered piperidin-4-one ring has a chair conformation. Attached to the isoxazoline rings are phenyl and 2,6 -dichlorophenyl substituents.

The two isoxazoline rings $(A$ and B) are non-planar, with envelope conformations. O2/N2/C7/C6 (ring A) and O3/N3/ C9/C8 (ring B) form nearly planar arrangements, with mean deviations of 0.0088 and $0.0060 \AA$, respectively. The spiroatom C2 lies 0.3436 (3) \AA out from the plane of ring A and C5 is -0.3772 (3) \AA out from the plane of ring B, forming the flaps of the envelopes. The dihedral angle between the C6/C2/ O 2 and $\mathrm{O} 2 / \mathrm{N} 2 / \mathrm{C} 7 / \mathrm{C} 6$ mean planes is $21.9(4)^{\circ}$. The corresponding angle between the $\mathrm{C} 8 / \mathrm{C} 5 / \mathrm{O} 3$ and $\mathrm{O} 3 / \mathrm{N} 3 / \mathrm{C} 9 / \mathrm{C} 8$ mean planes is 24.1 (4) ${ }^{\circ}$. The dihedral angle between the two aryl rings on ring A is $97.7(3)^{\circ}$, while that between the two aryl rings on ring B is $78.8(3)^{\circ}$.

Experimental

A mixture of 2,6 -dichlorobenzonitrile oxide (3 mmol) and 1-benzyl3,5 -dibenzylidenepiperidin-4-one (1.5 mmol) in dry benzene (30 ml) was heated under reflux for 40 h . After evaporation of the solvent, the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate $=5: 1$) to give the title compound, (I). M.p. 442-443 K; IR (KBr): $1736(\mathrm{C}=\mathrm{O}), 1602,1580(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C})$

Received 22 April 2003
Accepted 30 April 2003
Online 16 May 2003

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms and the CHCl_{3} molecule have been omitted for clarity.
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $): 2.42(2 \mathrm{H}, d), 2.79(2 \mathrm{H}, d), 3.10(2 \mathrm{H}$, $m), 6.13(2 \mathrm{H}, s), 6.94-7.37(21 \mathrm{H}, m) .20 \mathrm{mg}$ of (I) was dissolved in 15 ml chloroform; the solution was kept at room temperature for 10 d and natural evaporation gave colorless single crystals of (I) suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{40} \mathrm{H}_{29} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{CHCl}_{3}$
$M_{r}=860.83$
Triclinic, $P \overline{1}$
$a=11.905$ (18) A
$b=12.046$ (17) \AA
$c=15.17(2) \AA$
$\alpha=87.89(3)^{\circ}$
$\beta=81.20(3)^{\circ}$
$\gamma=70.20(3)^{\circ}$
$V=2022(5) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.414 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 688 \\
& \quad \text { reflections } \\
& \theta=2.1-19.7^{\circ} \\
& \mu=0.53 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.22 \times 0.20 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\text {min }}=0.697, T_{\text {max }}=0.909$
10516 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.196$
$S=1.07$
7038 reflections
504 parameters

Figure 2
The crystal packing of (I), viewed along the b axis, with CHCl_{3} molecules omitted.

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.196(5)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.453(6)$
$\mathrm{O} 2-\mathrm{N} 2$	$1.407(5)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.276(5)$
$\mathrm{O} 3-\mathrm{N} 3$	$1.413(5)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.280(6)$
$\mathrm{N} 2-\mathrm{O} 2-\mathrm{C} 2$	$108.6(3)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{O} 2$	$108.8(3)$
$\mathrm{N} 3-\mathrm{O} 3-\mathrm{C} 5$	$108.8(3)$	$\mathrm{C} 9-\mathrm{N} 3-\mathrm{O} 3$	$107.8(4)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	$112.0(4)$		
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 7$	$12.5(5)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	$-1.8(6)$
$\mathrm{C} 5-\mathrm{O} 3-\mathrm{N} 3-\mathrm{C} 9$	$14.6(4)$		

H atoms were positioned geometrically and refined with ridingmodel constraints.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT and SHELXTL (Bruker, 1998); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Foundation for University Key Teachers, administered by the Ministry of Education of China.

References

Bruker (1998). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D., Kunze, H. B. \& Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. \& Mikamiy, Y. (1991). Tetrahedron, 47, 6617-6622.

